NEW INDIVIDUALS FROM THE ALMAHATA SITTA STREWN FIELD: OLD FRIENDS AND BRAND-NEW FELLOWS. A. Bischoff¹, S. Ebert¹, M. Patzek¹, M. Horstmann¹, A. Pack², J.-A. Barrat³, and S. Decker⁴. ¹Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. E-mail: bischoa@uni-muenster.de. ²Uni Göttingen, Geowissenschaftliches Zentrum, Goldschmidtstr. 1, 37077 Göttingen, Germany. ³Université de Bretagne Occidentale, 29280 Plouzané, France. ⁴Meteorite-Museum, Oberstr. 10a, 55430 Oberwesel, Germany.

Introduction: After asteroid 2008 TC₃ impacted Earth in 2008, a highly diverse range of meteorite types was identified among the numerous meteorite fragments collected in the Almahata Sitta strewn field, including various types of ureilitic rocks and chondrites (e.g. [1-9]). The petrography and mineralogy of nine new samples were studied here (MS-MU-012 – MS-MU-020), complemented with oxygen isotope compositions obtained for several of the new samples by IR laser fluorination.

Results: MS-MU-012 and -019 are the most outstanding new samples. MS-MU-012 is an unbrecciated, ureilitic feldsparolivine-pyroxene rock. The plagioclase-rich areas do not occur as isolated fragments as observed in (polymict) ureilitic breccias, but appear to represent primary rock constituents. These plagioclase-rich areas display very low REE abundances (<0.15 x CI), except for Eu (~2 ppm; Eu/Eu*=250-300). Oxygen isotopes $(\delta^{17}O = 2.63\%, \delta^{18}O = 6.98\%)$; average of 3 measurements) support the relation of the plagioclase-rich aliquot of MS-MU-012 to ureilites. MS-MU-019 is an unusual enstatite- and metal-rich achondrite with two different coexisting enstatite populations (~En_{98.5}Wo_{1.3} and ~En_{96.5}Wo_{3.2}). Based on texture, mineralogy, and O-isotopes it might represent a unique type of meteorite. Preliminary results for MS-MU-019 indicate variable $\delta^{17}O$ (3.5-4.1‰) and δ^{18} O (6.6-7.5‰) values, which may imply a relationship to E-chondrites or aubrites.

MS-MU-013 has a chondritic texture. Based on the compositions of olivine (~Fa₁₇) and pyroxene (~Fs₁₆) the rock has to be classified as a H5 chondrite, although the O-isotope compositions ($\delta^{17}O = 3.38\%$, $\delta^{18}O = 4.92\%$; mean of 2 analyses) are more related to L/LL. Based on the presence of alabandite and the recrystallized texture, MS-MU-015 clearly is an EL6 chondrite (Fs_{<0.3}).

MS-MU-014, -016, -017, and -020 are coarse-grained ureilites. The olivine cores in MS-MU-014 have \sim Fa₂₀ and the pyroxene has \sim Fs₁₇. MS-MU-016 has abundant pyroxene, and the olivine and pyroxene cores have \sim Fa_{12.5} and \sim Fs₁₁, respectively. MS-MU-017 is also rich in pyroxene. The olivine and low-Ca pyroxene cores have \sim Fa₁₃ and \sim Fs₁₁, respectively. Frequently observed Ca-pyroxenes have variable compositions (\sim Fs₆₋₃₆Wo₃₀₋₃₉). The olivine in MS-MU-020 is strongly zoned with the highest Fa content of \sim Fa₂₁; low-Ca pyroxene cores have \sim Fs_{18.5}. MS-MU-018 is a heavily-shocked, fine-grained ureilite with abundant opaque phases (metal, sulfides).

References [1] Jenniskens P. et al. 2009. Nature 458:485-488. [2] Bischoff A. et al. 2010. Meteoritics & Planet. Sci. 45:1638-1656. [3] Horstmann M. and Bischoff A. 2014. Chemie der Erde - Geochemistry 74:149-184. [4] Goodrich C. A. et al. 2014. Elements 10:31-37 [5] Bischoff A. et al. 2012. Meteoritics & Planet. Sci. 47:A71. [6] Horstmann M. et al. 2010. Meteoritics & Planet. Sci. 45:1657-1667. [7] Zolensky M. E. et al. 2010. Meteoritics & Planet. Sci. 45:1618-1637. [8] Horstmann M. et al. 2012. Meteoritics & Planet. Sci. 47:A193. [9] Bischoff A. et al. 2014. Proc. Natl. Acad. Sci. 111:12689-12692.